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Abstract: Particle Filters (PFs), are widely used where the system is non Linear and non Gaussian. Choosing the im-
portance proposal distribution is a key issue for solving nonlinear filtering problems. Practical object tracking
problems encourage researchers to design better candidatefor proposal distribution in order to gain better
performance. In this correspondence, a new algorithm referred to as the hybrid iterated Kalman particle filter
(HIKPF) is proposed. The proposed algorithm is developed from unscented Kalman filter (UKF) and iterated
extended Kalman filter (IEKF) to generate the proposal distribution, which lead to an efficient use of the latest
observations and generates more close approximation of theposterior probability density. Comparing with
previously suggested methods(e.g PF, PF-EKF, PF-UKF, PF-IEKF), our proposed method shows a better per-
formance and tracking accuracy. The correctness as well as validity of the algorithm is demonstrated through
numerical simulation and experiment results.

1 INTRODUCTION

The increasing interest in the object tracking is moti-
vated by a huge number of promising applications that
can now be tackled in real-time applications. These
applications include performance analysis, surveil-
lance, video-indexing, smart interfaces, teleconfer-
encing and video compression and so on.

A variety of tracking algorithms have been pro-
posed and implemented. They can be roughly clas-
sified into two categories: deterministic methods and
stochastic methods. Deterministic methods typically
track the object by performing an iterative search for
a similarity between the template image and the cur-
rent one. The algorithms which utilize the determin-
istic method are background subtraction ((McIvor,
2000); (LIU et al., 2001)), inter-frame difference
((Lipton et al., 1998);(Collins et al., 2000)), opti-
cal flow (Meyer et al., 1998), skin color extraction
((kyung-min Cho et al., 2001); (Phung et al., 2003))
and so on. On the other hand, the stochastic meth-
ods use the state space to model the underlying dy-
namics of the tracking system such as Kalman filter
(Broida and Chellappa, 1986) and particle filter ((Is-
ard and Blake, 1998); (Ristic et al., 2004); (Sugandi
et al., 2009); (Fen and Ming., 2010); (Zhiqiang et al.,
2011); (Zhonga et al., 2012) ).

Probabilistic methods have become popular

among many researchers. The Kalman filter is a com-
mon approach for dealing with target tracking in a
probabilistic framework, but it cannot resolve a track-
ing problem where the model is nonlinear and non-
Gaussian. The extended Kalman filter can deal with
this problem, but still has a problem when the non-
linearity and non-Gaussian cannot be approximated
accurately.

Recently, the particle filter method, a numerical
method that allows finding an approximate solution
to the sequential estimation has proven very success-
ful for nonlinear and non-Gaussian estimation prob-
lems. It approximates a posterior probability density
of the state such as the object position by using sam-
ples which are called particles. A key issue in particle
filtering is the selection of the proposal distribution
function. In general, it is hard to design such pro-
posals. Now many proposed distributions have been
proposed in the literature. For example, the prior, the
EKF Gaussian approximation and the UKF proposal
are used as the proposal distribution for particle filter
((Gordon et al., 1993); (Arulampalam et al., 2002);
(R Van der Merwe, 2000)).

In this paper, a new proposal distribution gener-
ating scheme for the particle filtering framework is
proposed. The algorithm obtained is named as the hy-
brid Iterated Kalman particle filter (HIKPF). This al-
gorithm uses hybrid Kalman filter (HKF) to generate
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proposal distribution. In this algorithm, each parti-
cle is updated by the UKF and the IEKF sequentially.
Through this procedure, efficient use of the latest ob-
servations is made, which consequently improves the
performance of particle filters.

2 PARTICLE FILTER

Considering the following nonlinear system (Arulam-
palam et al., 2002):,

xk = fk(xk−1,vk−1) (1)

yk = hk(xk,uk) (2)
Wherexk denotes the system state, andyk denotes the
observation at timek. The functionsf (·) andh(·) rep-
resent the system transition model and the measure-
ment model respectively. The process noisevk and the
measurement noiseuk are assumed independent with
known distributions. The prior knowledge of the ini-
tial state is given by the probability distributionP(x0).

2.1 Recursive Bayesian Estimation

The objective of the recursive Bayesian state estima-
tion problem is to find the mean and variance of a
random variablexk using the conditional probability
density function P(xk|yk), using Bayes’ formula
under following assumptions (Arulampalam et al.,
2002):
• The states follow a first-order Markov process.
• The observation are conditionally independent
given the state variables.

Yk denotes the set of all the available measure-
ments, i.e The posterior densityP(xk|yk) is estimated
in two steps: (a) Prediction step, which is computed
before obtaining an observation.

P(xk|yk−1) =

∫
P(xk|xk−1)P(xk−1|yk−1)dxk−1 (3)

(b) Update step, which is computed after obtaining an
observation

P(xk|yk) =
P(yk|xk)P(xk|yk−1)

P(yk|yk−1)
(4)

where

P(yk|yk−1) =

∫
P(yk|xk)P(xk|yk−1)dxk (5)

By substituting Eqs. (3) and (5) in Eq. (4) we can get
obtain the final equation:

P(xk|yk) =
P(yk|xk)

∫
P(xk|xk−1)P(xk−1|yk−1)dxk−1∫

P(yk|xk)P(xk|yk−1)dxk
(6)

The prediction and update strategy provides an op-
timal solution to the state estimation problem,which,
unfortunately, involves high-dimensional integration.
The solution is extremely general and aspects such as
multimodality, asymmetries and discontinuities can
be incorporated.

2.2 Solution through Monte Carlo
Sampling

The exact analytical solution to the recursive prop-
agation of the posterior density is difficult to obtain
for a general nonlinear system, because it involves
high-dimensional integration of unknown density
functions (refer to Eqs. (3) and (6)). However, when
the process model is linear and noise sequences
are zero mean Gaussian white noise sequences,
the Kalman filter describes the optimal recursive
solution to the sequential state estimation problem
(Soderstorm, 2002) While dealing with nonlinear
systems, it becomes necessary to develop approx-
imate and computationally tractable sub-optimal
solutions to the above sequential Bayesian estimation
problem. The particle filter is a numerical method
for implementing an optimal recursive Bayesian
filter through Monte Carlo simulation. Classical
particle filters approximate the distributionP(xk|yk)
, using a set of random samplesxi

k : i = 1, · · · ,N
together with associated weightsωi

k : i = 1, · · · ,N
and xk = x j , j = 0, · · · ,k is the set of all states up
to time k. The weights are normalised such that
∑i ωi

k = 1. Then, the posterior density atk can be
approximated as

P(xk|yk)≈
N

∑
i=1

ωi
kδ(xk− xi

k) (7)

where δ(xk − xi
k) denotes the Dirac delta function.

The weightsωi
k can be viewed as approximations to

the relative posterior probabilities of the particles. It
should be noted that the posterior densityP(xk|yk)
is seldom known. Therefore, it is not possible to
draw samples from this distribution. For this reason,
q[(xi

k|x
i
k−1),yk], a proposal density or importance

density, is used. At each sampling instant, a sample
is drawn from the proposal distribution generated
around each particle. To compensate for the dif-
ference between the proposal density and the true
posterior density, the weights are then computed as
follows:

ω̃i
k =

P(xi
k|yk)

q(xi
k|yk)

(8)
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and the updated weight equation is:

ω̃i
k =

P(yk|xi
k)P(x

i
k|x

i
k−1)

q(xi
k|x

i
k−1,yk)

ω̃i
k−1 (9)

as a result the normalized weight is given by:

ωi
k =

ω̃i
k

∑ j=1 ω̃ j
k

(10)

2.3 Selection of Proposal Distributions

The selection of a suitable form of importance func-
tion to represent the true posterior density is a cru-
cial step in the particle filter ((Arulampalam et al.,
2002); (Rawlings and Bakshi, 2006)). The conven-
tional approach is to use the state transition den-
sity as the proposal distribution/importance function,
i.e.q[(xi

k|x
i
k−1),yk] ≈ P[xi

k|x
i
k−1], and draw particles

from the above importance function. Because the
state transition function (being used as importance
function) does not take in to account the most re-
cent observation,yk, the particles drawn from tran-
sition density may have very low likelihood, and their
contributions to the posterior estimation become neg-
ligible. It may be noted that the use of appropriate
importance function can significantly reduce the num-
ber of particles required for generating accurate esti-
mates, as compared to the conventional particle filter
(Arulampalam et al., 2002). In general, it is difficult
to design such a proposal and the choice of proposal
distribution is highly problem dependent.

The computational steps involved are as follows
(Arulampalam et al., 2002):

2.3.1 Initialization

At k= 0, M samples are drawn from the given distri-
bution of initial the state, ˆx0|0.

2.3.2 Importance Sampling

At the k′th time step, after obtaining measurement
yk, M observers (EKF or UKF or IEKF) are used in
parallel to compute means and covariances of the pro-
posal distributions, i.e. ¯xi

k|k, P̄
i
k|k for each propagated

particlex̂i
k−1|k−1. The importance density is then ap-

proximated asq[(xi
k|x

i
k−1),yk]≈ N[x̄i

k|k, P̄
i
k|k] and used

to draw a sample around each particle.

2.3.3 Computation of Weights

The weights associated with each particle are now
computed by Eq. (9),and Theseω̃i

k weights are then
normalized to obtainωi

k as given by Eq. (10).

2.3.4 Re-sampling

This step involves discarding samples that have low
importance and reassigning weights to the remaining
particles. Various approaches have been suggested in
the literature for carrying out this step.

In our proposed algorithm we used the residual re-
sampling algorithm.

3 HYBRID ITERATED KALMAN
PARTICLE FILTER

Before talking about our proposed algorithm (Hybrid
Iterated Kalman Particle Filter), firstly the unscented
Kalman filter and the iterated extended kalman filter
are introduced.

3.1 Unscented Kalman Filter

The Unscented Kalman Filter belongs to a big-
ger class of filters called Sigma-Point Kalman Fil-
ters or Linear Regression Kalman Filters, which are
using the statistical linearization technique ((Gelb,
1974); (Julier, 2002); (Julier et al., 2002);(Julier and
Uhlmann, 2004); (Lefebvre and Bruyninckx, 2004)) .
This technique is used to linearize a nonlinear func-
tion of a random variable through a linear regression
between n points drawn from the prior distribution of
the random variable. The UKF is founded on the intu-
ition that it is easier to approximate a probability dis-
tribution that it is to approximate an arbitrary nonlin-
ear function or transformation (Julier and Uhlmann,
2004). The sigma points are chosen so that their
mean and covariance to be exactlyxa

k−1 and Pk−1.
Each sigma point is then propagated through the non-
linearity yielding in the end a cloud of transformed
points. The new estimated mean and covariance are
then computed based on their statistics. This process
is called unscented transformation. The unscented
transformation is a method for calculating the statis-
tics of a random variable which undergoes a nonlinear
transformation (Wan and van der Merwe, 2001).

3.2 Iterated Extended Kalman Filter

The extended Kalman filter (EKF) is a minimum
mean-square-error (MMSE) estimator based on the
Taylor series expansions of the nonlinear functions
f (·) andh(·) around the current estimates.

In the EKF, the state distribution is represented
by using a Gaussian random variable. It only uses the
linear expansion terms.
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Model and Observation:

xk = f (xk−1)+ vk−1
yk = h(yk+uk)

Initialization:

xa
0 = µ0 with error covarianceP0

Model Forecast Step/Predictor:

xf
k ≈ f (xa

k−1)

Pf
k = Jf (x

a
k−1)Pk−1JT

f (x
a
k−1)+Qk−1

Data Assimilation Step/Corrector:

xa
k ≈ xf

k +Kk(yk−h(xa
k))

Kk = Pf
k JT

k (x̂k)(Jh(x
a
k,i)P

f
k JT

k (x
a
k)+Rk)

−1

Pk = (I −KkJh(x
a
k))P

f
k

In the EKF,h(∆) is linearized about the predicted
state estimatexf

k . The IEKF (Liang-qun et al., 2005)
tries to linearize it about the most recent estimate, im-
proving this way the accuracy ((Lefebvre and Bruyn-
inckx, 2004) ; (Gelb, 1974) ). This is achieved by
calculatingxa

k,Kk,Pk at each iteration. Denotexa
k,i the

estimate at timek andith iteration. The iteration pro-
cess is initialized withxa

k,0 = xf
k . Then the measure-

ment update step becomes for eachi:

xa
k,i ≈ xf

k +Kk(yk−h(xa
k,i))

Kk,i = Pf
k JT

k (x̂k,i)(Jh(x
a
k,i)P

f
k JT

k (x
a
k,i)+Rk)

−1

Pk,i = (I −Kk,iJh(x
a
k,i))P

f
k

3.3 Hybrid Iterated Kalman Particle
Filter

Our proposed algorithm named hybrid iterated
Kalman particle filter is a combination of the UKF
and the IEKF . The HIKPF inherits the excellent prop-
erties of the UKF and IEKF and can make efficient
use of the latest observations, which make it very
attractive for the generation of proposal distribution
within the particle filtering framework.

At time k, the UKF is firstly used to update the
particles, and to obtain the state estimate ˜xk,u f , and
the corresponding covariance estimatePi

k,u f , then the

particles are updated using the IEKF with ¯xk,u f , and

Pi
k,u f . After the IEKF-update, the final state and co-

variance estimates ¯xi
k and P̂i

kj
of time stepk are ob-

tained.
Using the estimates, the required proposal distri-

bution N(x̄i
kj
, P̂i

kj
) is formed. Here, samples can be

drawn from the approximated distributionN(x̄i
kj
, P̂i

kj
).

The following figure shows the flow chart of our
proposed algorithm.

Initialize Particles

New Observations

Particles
Generations

Update Particles
Using UKF

Update Particles
Using IEKF

Normalize

Resampling

Output Estimations

More Ob-
servations

Output

yes

no

Figure 1: The schematic description of the proposed
algrithm (HIKPF).

HIKPF Algorithm Steps
—————————————————
Step 1.Initialization:k= 0

FOR i = 1, .....,Np

Draw the particlesxi
0 from the priorP(x0) and set:

x̄i
0 = E(xi

0)

Pi
0 = E[(xi

0− x̄i
0)(x

i
0− x̄i

0)
T ]

x̄i
0,a = E[(xi

0,a)] = [(xi
0)

T ,0,0]T

Pi
0,a=E[(xi

0,a− x̄i
0,a)(x

i
0,a− x̄i

0,a)
T ] = diag(Pi

0QR)
END FOR

Step 2. FORk= 1,2, ...

(1)FORi = 1, .....,Np
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(a) Update the particles using the UKF
Calculate the sigma points

χi
k−1,a = [x̄i

k−1,a x̄i
k−1,a±

√

(na+λ)Pi
k−1,a]

Propagate samples into future and compute
the one-step-ahead estimates:

χi
k|k−1,x = f (χi

k−1,x,χ
i
k−1,v)

Yi
k|k−1,u f = h(χi

k|k−1,x,χ
i
k−1,u)

x̄i
k|k−1,u f =

2na

∑
j=0

W( j)
m χ( j)i

k|k−1,x

Pi
k|k−1,u f =

2na

∑
j=0

W( j)
c [χ( j)i

k|k−1,x− x̄i
k|k−1,u f ][χ

( j)i
k|k−1,x−

x̄i
k|k−1,u f ]

T

ȳi
k|k−1,u f = ∑2na

j=0W( j)
m Y( j)i

k|k−1,u f

Incorporate the new observationyk , and update
the one-step-ahead estimates to obtain ¯xi

k,u f

Pykyk =
2na

∑
j=0

W( j)
c [Y( j)i

k|k−1,u f − ȳi
k|k−1,u f ][Y

( j)i
k|k−1,u f − ȳi

k|k−1,u f ]
T

Pxkyk =
2na

∑
j=0

W( j)
c [χ( j)ik|k−1

− x̄i
k|k−1,u f ][Y

( j)i
k|k−1,u f − ȳi

k|k−1,u f ]
T

Kk,u f = PxkykP
−1
ykyk

x̄i
k,u f = x̄i

k|k−1,u f +Kk,u f(yk− ȳi
k|k−1,u f)

Pi
k,u f = Pi

k|k−1,u f −Kk,u fPykykK
T
k,u f

(b) Use the IEKF to update estimations obtained
through UKF update process

FOR i = 1, .....,Np

Compute the JacobiansF i
k&Gi

k of the process
model

Update the particles with the IEKF

x̄i
k|k−1,ie f = f (x̄i

k,u f )

Pi
k|k−1,ie f = F i

kPi
k,u f(F

i
k)

T +Gi
k

FOR j = 1 : c (c is the number of iteration)

Compute the JacobiansH i
kj

&U i
kj

of the
measurement model

Update the covariance and the state estimate
from the following equations obtained

from IEKF respectively .

Kkj ,ie f = Pi
kj |kj−1,ie f(H

i
kj
)[U i

kj
Rkj (U

i
kj
)T +

H i
kj

Pi
kj |kj−1,ie f(H

i
kj
)T ]−1

Pi
kj ,ie f = Pi

kj |kj−1,ie f −Kkj ,ie f H i
kj

Pi
kj |kj−1,ie f

x̄i
kj ,ie f = x̄i

kj |kj−1,ie f +Kkj ,ie f(ykj −h(x̄i
kj ,ie f ))

let x̄i
kj
= x̄i

kj ,ie f , P̂i
kj
= Pi

kj ,ie f

END FOR

Drawxi
k ∼ q(xi

k|x
i
k−1,zk) = N(x̄i

kj
, P̂i

kj
)

Assign the particle a weight,wi
k, according to the

equation below obtained from PF

wi
k ∝ wi

k−1
P(zk|x

i
k)P(x

i
k|P(x

i
k−1)

q(xi
k|x

i
k−1,zk)

END FOR

(2) Normalize the weights

FOR i = 1, ....,N

wi
k =

wi
k

∑
j=1:N

wi
k
.

END FOR.
(3) Resample
(4) Output: calculate the required estimations

using the particle set.

END FOR.
Step 3.k= k+1, go to Step2 or end the algorithm
———————————————————–

4 SIMULATION AND
EXPERIMENTAL RESULTS

The simulation results of the HIKPF algorithm is
presented and discussed in this section as well as
the comparison between HIKPF and the previously
proposed algorithms including PF, PF-EKF, PF-UPF
and PF-IEKF . The system models were taken from
(R Van der Merwe, 2000) as following.

xk = 1+ sin(0.4πk)+0.5xk−1+ vk−1

yk =

{

0.2x2
k+ek, if k≤ 30

0.5xk−2+ek, if k> 30

Where vk is a Gammaςa(3,2) random variable
modelling the process noise, and the measurement
noise uk is drawn from a Gaussian distribution
N(0,0.00001). In this experiment 200 particles are
used and the program is repeated 100 times for time-
stepsk = 1, ..,60. The unscented transformation pa-
rameters are set to beα = 1,β = 0, andκ = 2. The
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output of the algorithm is the mean of samples set that
can be computed ˆx= 1

N ∑Ns
j=1x j

t . The mean square er-
rors of each run is defined as

MSE=

(

1
T

T

∑
k=1

(x̂k− xk)

)
1
2

(11)

Figure 2 Shows the true and the estimated state of the
system HIKPF and the other methods. It is clear from
the figure that particle filter (PF) and extended kalman
particle filter ( PF-EKF) deviate from the true states
at some time steps. The unscented Kalman particle
filter(PF-UKF) and iterated extended kalman particle
filter (PF-IEKF) gives better performance than PF and
PF-EKF but less than our proposed system (HIKPF).
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Figure 2: Estimation of the system state generated by dif-
ferent particles filters.

The performance evaluation of our system com-
pared with other methods is shown in table 1. In
this table, our proposed system (HIKPF) gives the
best performance with the lowest mean and variance
with mean value 0.015607 and variance value (Var)
0.00000395.

Table 1: Estimation of means and variances ofMSE of dif-
ferent particles filters over 100 independent runs.

Algorithm
MSE

mean Var
PF 0.25881 0.057151

PF-EKF 0.32392 0.021656
PF-UKF 0.077684 0.006589
PF-IEKF 0.049368 0.0015238
HIKPF 0.015607 0.00000395

Estimation of mean squars errors (MSEs) of differ-
ent particle filters are shown in Figure 3 In this fig-
ure, it is clear that the bottom real line (Blue Line) is
the HIKPF performance line. The proposed algorithm
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M
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PF PF−EKF PF−UKF PF−IEKF HIKPF

Figure 3: MSEs estimation of different particles filters at
each run.

give the lowest mean square error at every indepen-
dent run.

5 CONCLUSIONS

A new algorithm referred to as the hybrid iterated
Kalman particle filter (HIKPF) is proposed. The pro-
posed algorithm is developed from unscented Kalman
filter (UKF) and iterated extended Kalman filter
(IEKF) to generate the proposal distribution leading
to efficient use of the latest observations and generates
more close approximation of the posterior probability
density. Numerical simulation and experiment results
show that HIKPF algorithm is much robust than the
previously proposed algorithms such as (PF, PF-EKF,
PF-UPF and PF-IEKF).
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